English

Solve the Following Equation: Sin X + Cos X = 1 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[\sin x + \cos x = 1\]
Sum

Solution

Given:
\[\sin x + \cos x = 1\]      ...(i)

The equation is of the form 
\[a \sin \theta + b \cos \theta = c\], where 
\[a = 1, b = 1\] and \[c = 1\].
Let: \[a = r \sin \alpha\] and \[b = r \cos \alpha\]
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\] and

\[\tan\alpha = \frac{b}{a} = 1 \Rightarrow \alpha = \frac{\pi}{4}\]

On putting

\[a = 1 = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (i), we get:
\[r \sin \alpha \sin x + r \cos \alpha \cos x = 1\]

\[\Rightarrow r \cos ( x - \alpha) = 1\]

\[ \Rightarrow \sqrt{2} \cos \left( x - \frac{\pi}{4} \right) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]

\[ \Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in Z\]

On taking positive sign, we get:
\[x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{4} + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
On taking negative sign, we get:
\[x - \frac{\pi}{4} = 2m\pi - \frac{\pi}{4}\]
\[ \Rightarrow x = 2m\pi, m \in Z\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 6.3 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Write the general solutions of tan2 2x = 1.

 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×