Advertisements
Advertisements
Question
Solve the following equation:
Solution
Given:
\[\sin x + \cos x = 1\] ...(i)
Now,
\[\tan\alpha = \frac{b}{a} = 1 \Rightarrow \alpha = \frac{\pi}{4}\]
On putting
\[r \sin \alpha \sin x + r \cos \alpha \cos x = 1\]
\[\Rightarrow r \cos ( x - \alpha) = 1\]
\[ \Rightarrow \sqrt{2} \cos \left( x - \frac{\pi}{4} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in Z\]
On taking positive sign, we get:
\[x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{4} + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
On taking negative sign, we get:
\[x - \frac{\pi}{4} = 2m\pi - \frac{\pi}{4}\]
\[ \Rightarrow x = 2m\pi, m \in Z\]
APPEARS IN
RELATED QUESTIONS
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Write the general solutions of tan2 2x = 1.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.