English

If a is Any Real Number, the Number of Roots of \[\Cot X - \Tan X = A\] in the First Quadrant is (Are). - Mathematics

Advertisements
Advertisements

Question

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).

Options

  • 2

  • 0

  • 1

  • none of these

MCQ
Sum

Solution

1
Given:
\[\cot x - \tan x = a\]
\[ \Rightarrow \frac{1}{\tan x} - \tan x = a\]
\[ \Rightarrow 1 - \tan^2 x = a \tan x\]
\[ \Rightarrow \tan^2 x + a \tan x - 1 = 0\]
It is a quadratic equation.
If tan x = z, , then the equation becomes
\[z^2 + az - 1 = 0\]

\[\Rightarrow z = \frac{- a \pm \sqrt{a^2 + 4}}{2}\]
\[ \Rightarrow \tan x = \frac{- a \pm \sqrt{a^2 + 4}}{2}\]
\[ \Rightarrow x = \tan^{- 1} \left( \frac{- a \pm \sqrt{a^2 + 4}}{2} \right)\]
There are two roots of the given equation, but we need to find the number of roots in the first quadrant.
There is exactly one root of the equation, that is,
\[x = \tan^{- 1} \left( \frac{- a + \sqrt{a^2 + 4}}{2} \right)\].
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 4 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[4 \sin^2 x = 1\], then the values of x are

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×