Advertisements
Advertisements
Question
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
Options
2
0
1
none of these
Solution
1
Given:
\[\cot x - \tan x = a\]
\[ \Rightarrow \frac{1}{\tan x} - \tan x = a\]
\[ \Rightarrow 1 - \tan^2 x = a \tan x\]
\[ \Rightarrow \tan^2 x + a \tan x - 1 = 0\]
It is a quadratic equation.
If tan x = z, , then the equation becomes
\[z^2 + az - 1 = 0\]
\[ \Rightarrow \tan x = \frac{- a \pm \sqrt{a^2 + 4}}{2}\]
\[ \Rightarrow x = \tan^{- 1} \left( \frac{- a \pm \sqrt{a^2 + 4}}{2} \right)\]
There are two roots of the given equation, but we need to find the number of roots in the first quadrant.
There is exactly one root of the equation, that is,
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[4 \sin^2 x = 1\], then the values of x are
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0