English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Solve the following equations:sin θ + sin 3θ + sin 5θ = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0

Sum

Solution

sin θ + sin 3θ + sin 5θ = 0

`2 sin ((5theta + theta)/2) * cos ((5theta - theta)/2) + sin 3theta` = 0

`2sin ((6theta)/2) * cos ((4theta)/2) + sin 3theta` = 0

2 sin 3θ . cos 2θ + sin 3θ = 0

sin 3θ (2 cos 2θ + 1) = θ

sin 3θ = 0 or 2 cos 2θ + 1 = θ

sin 3θ = 0 or cos 2θ = `- 1/2`

To find the general solution of sin 3θ = 0

The general solution is

3θ = nπ, n ∈ Z

θ = `("n"pi)/3`, n ∈ Z

To find the general solution of cos 2θ = ` - 1/2`

cos 2θ = ` - 1/2`

cos 2θ = `cos (pi - pi/3)`

cos 2θ = `cos ((3pi - pi)/3)`

cos 2θ = `cos  ((2pi)/3)`

The general solution is

2θ = `2"n"pi +- (2pi)/3`, n ∈ Z

θ = `"n"pi +-  pi/3`, n ∈ Z

∴ The required solutions are

θ = `(:"n"pi)/3`, n ∈ Z

or

θ = `"n"pi +-  pi/3`, n ∈ Z

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.8 [Page 133]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.8 | Q 3. (iv) | Page 133

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Find the general solution of the following equation:

\[\sin x = \tan x\]

Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×