English

Sec 2 X = 4 X Y ( X + Y ) 2 is True If and Only If - Mathematics

Advertisements
Advertisements

Question

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 

Options

  • x + y ≠ 0

  • x = y, x ≠ 0

  • x = y

  • x ≠0, y ≠ 0

MCQ

Solution

 x = y, x ≠ 0

We have:

\[ \sec^2 x = \frac{4xy}{(x + y )^2}\]

\[ \Rightarrow \frac{4xy}{(x + y )^2} \geq 1 \left[ \because \sec^2 x \geq 1 \right]\]

\[ \Rightarrow 4xy\geq(x + y )^2\]
\[\Rightarrow 4xy \geq x^2 + y^2 + 2xy\]
\[ \Rightarrow 2xy \geq x^2 + y^2 \]
\[ \Rightarrow \left( x - y \right)^2 \leq 0\]
\[ \Rightarrow \left( x - y \right) \leq 0\]
\[ \Rightarrow x = y\]
\[\text{ For }x = 0, \sec^2 x \text{ will not be defined,} \]
\[ \Rightarrow x \neq 0\]
\[ \therefore x = y\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 14 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×