Advertisements
Advertisements
Question
Options
x + y ≠ 0
x = y, x ≠ 0
x = y
x ≠0, y ≠ 0
Solution
x = y, x ≠ 0
We have:
\[ \sec^2 x = \frac{4xy}{(x + y )^2}\]
\[ \Rightarrow \frac{4xy}{(x + y )^2} \geq 1 \left[ \because \sec^2 x \geq 1 \right]\]
\[ \Rightarrow 4xy\geq(x + y )^2\]
\[\Rightarrow 4xy \geq x^2 + y^2 + 2xy\]
\[ \Rightarrow 2xy \geq x^2 + y^2 \]
\[ \Rightarrow \left( x - y \right)^2 \leq 0\]
\[ \Rightarrow \left( x - y \right) \leq 0\]
\[ \Rightarrow x = y\]
\[\text{ For }x = 0, \sec^2 x \text{ will not be defined,} \]
\[ \Rightarrow x \neq 0\]
\[ \therefore x = y\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
Write the solution set of the equation
The smallest value of x satisfying the equation
The smallest positive angle which satisfies the equation
If \[4 \sin^2 x = 1\], then the values of x are
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.