Advertisements
Advertisements
Question
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solution
\[3 \sin^2 x - 5 \sin x \cos x + 8 \cos^2 x = 2\]
\[ \Rightarrow 3 \sin^2 x - 5 \sin x \cos x + 3 \cos^2 x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3\left( \sin^2 x + \cos^2 x \right) - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 3 - 5 \sin x \cos x + 5 \cos^2 x - 2 = 0\]
\[ \Rightarrow 5 \cos^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5\left( 1 - \sin^2 x \right) - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 - 5 \sin^2 x - 5 \sin x \cos x + 1 = 0\]
\[ \Rightarrow 5 \sin^2 x + 5 \sin x \cos x - 6 = 0\]
\[\text{ Dividing by }\cos^2 x,\text{ we get }\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 \sec^2 x = 0\]
\[ \Rightarrow 5 \tan^2 x + 5 \tan x - 6 - 6 \tan^2 x = 0\]
\[ \Rightarrow - \tan^2 x + 5 \tan x - 6 = 0\]
\[ \Rightarrow \tan^2 x - 5 \tan x + 6 = 0\]
\[ \Rightarrow \tan^2 x - 3 \tan x - 2 \tan x + 6 = 0\]
\[ \Rightarrow \left( \tan x - 3 \right)\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \left( \tan x - 3 \right) = 0\text{ or }\left( \tan x - 2 \right) = 0\]
\[ \Rightarrow \tan x = 3\text{ or }\tan x = 2\]
\[ \Rightarrow x = n\pi + \tan^{- 1} 3\text{ or }x = n\pi + \tan^{- 1} 2, n \in \mathbb{Z}\]
APPEARS IN
RELATED QUESTIONS
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
Write the solution set of the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1