Advertisements
Advertisements
Question
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Solution
Given:
\[4m = cotx\left( 1 + \sin x \right) and 4n = cot x\left( 1 - \sin x \right)\]
Multiplying both the equations:
\[ \Rightarrow 16mn = co t^2 x\left( 1 - \sin^2 x \right)\]
\[ \Rightarrow 16mn = co t^2 x . \cos^2 x\]
\[ \Rightarrow mn = \frac{\cos^4 x}{16 \sin^2 x} \left( 1 \right)\]
Squaring the given equation:
\[16 m^2 = co t^2 x \left( 1 + \sin x \right)^2 \text{ and }16 n^2 = co t^2 x \left( 1 - \sin x \right)^2 \]
\[ \Rightarrow 16 m^2 - 16 n^2 = co t^2 x\left( 4\sin x \right)\]
\[ \Rightarrow m^2 - n^2 = \frac{co t^2 x . \sin x}{4}\]
Squaring both sides,
\[ \left( m^2 - n^2 \right)^2 = \frac{co t^4 x . \sin^2 x}{16}\]
\[ \Rightarrow \left( m^2 - n^2 \right)^2 = \frac{\cos^4 x}{16 \sin^2 x} (2)\]
From (1) and (2):
\[ \left( m^2 - n^2 \right)^2 = mn\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
Prove that
Prove that:
sin6 A + cos6 A + 3 sin2 A cos2 A =
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0