English

Solve the Following Equation: 3tanx + Cot X = 5 Cosec X - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:
3tanx + cot x = 5 cosec x

Sum

Solution

\[3 \tan x + \cot x = 5 cosec x\]
\[ \Rightarrow \frac{3 \sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow \frac{3 \sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow 3\left( 1 - \cos^2 x \right) + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 3 - 3 \cos^2 x + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 2 \cos^2 x + 5 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x + 6 \cos x - \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x\left( \cos x + 3 \right) - 1\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right)\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right) = 0\text{ or }\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\text{ or }\cos x = - 3\]
\[\cos x = - 3\text{ is not possible }\left( \because - 1 \leq \cos x \leq 1 \right)\]
\[ \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 7.9 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×