Advertisements
Advertisements
Question
Solve the following equation:
3tanx + cot x = 5 cosec x
Solution
\[3 \tan x + \cot x = 5 cosec x\]
\[ \Rightarrow \frac{3 \sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow \frac{3 \sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow 3\left( 1 - \cos^2 x \right) + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 3 - 3 \cos^2 x + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 2 \cos^2 x + 5 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x + 6 \cos x - \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x\left( \cos x + 3 \right) - 1\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right)\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right) = 0\text{ or }\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\text{ or }\cos x = - 3\]
\[\cos x = - 3\text{ is not possible }\left( \because - 1 \leq \cos x \leq 1 \right)\]
\[ \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the solution set of the equation
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.