English

If Tan a + Cot a = 4, Then Tan4 a + Cot4 a is Equal to - Mathematics

Advertisements
Advertisements

Question

If tan A + cot A = 4, then tan4 A + cot4 A is equal to

Options

  • 110

  • 191

  • 80

  • 194

MCQ

Solution

194

We have: 

tanA+cotA=4

Squaring both the sides:

(tanA+cotA)2=42

tan2A+cot2A+2(tanA)(cotA)=16

tan2A+cot2A+2=16

tan2A+cot2A=14

Squaring both the sides again: 

(tan2A+cot2A)2=142

tan4A+cot4A+2(tan2A)(cot2A)=196

tan4A+cot4A+2=196

tan4A+cot4A=194

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 18 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  cotx=-3


If cosecxsinx=a3,secxcosx=b3, then prove that a2b2(a2+b2)=1


If cotx(1+sinx)=4m and cotx(1sinx)=4n, (m2+n2)2=mn


If Tn=sinnx+cosnx, prove that T3T5T1=T5T7T3

 


If Tn=sinnx+cosnx, prove that 6T1015T8+10T61=0


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 12


Prove that:

3sinπ6secπ34sin5π6cotπ4=1

 


Prove that:
cos(2π+x)cosec(2π+x)tan(π/2+x)sec(π/2+x)cosxcot(π+x)=1

 


Prove that

sin(180+x)cos(90+x)tan(270x)cot(360x)sin(360x)cos(360+x)cosec(x)sin(270+x)=1

 


Prove that

{1+cotxsec(π2+x)}{1+cotx+sec(π2+x)}=2cotx

 


If 0<x<π2, and if y+11y=1+sinx1sinx, then y is equal to


If tan x=15 and θ lies in the IV quadrant, then the value of cos x is

 

If 3π4<α<π, then 2cotα+1sin2α is equal to


If x is an acute angle and tanx=17, then the value of cosec2xsec2xcosec2x+sec2x is


Find the general solution of the following equation:

3secx=2

Find the general solution of the following equation:

sin2x=32

Find the general solution of the following equation:

tanx+cot2x=0

Find the general solution of the following equation:

tan2xtanx=1

Find the general solution of the following equation:

sin3x+cos2x=0

Solve the following equation:

2sin2x+3cosx+1=0

Solve the following equation:

sinx+sin5x=sin3x

Solve the following equation:

sin3xsinx=4cos2x2

Solve the following equation:

tanx+tan2x=tan3x

Solve the following equation:

sinx+cosx=1

Solve the following equation:

cosec x=1+cotx


Solve the following equation:
2sin2x=3cosx,0x2π


Write the number of solutions of the equation
4sinx3cosx=7


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If 2sin2x=3cosx. where 0x2π, then find the value of x.


If a is any real number, the number of roots of cotxtanx=a in the first quadrant is (are).


A solution of the equation cos2x+sinx+1=0, lies in the interval


The general value of x satisfying the equation
3sinx+cosx=3


If cotxtanx=secx, then, x is equal to

 


The number of values of x in the interval [0, 5 π] satisfying the equation 3sin2x7sinx+2=0 is


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then tan140-tan1301+tan140 tan130 =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.