Advertisements
Advertisements
Question
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
Options
- \[\left( - \pi/4, \pi/4 \right)\]
- \[\left( \pi/4, 3\pi/4 \right)\]
- \[\left( 3\pi/4, 5\pi/4 \right)\]
- \[\left( 5\pi/4, 7\pi/4 \right)\]
Solution
\[\left( 5\pi/4, 7\pi/4 \right)\]
Given:
\[\cos^2 x + \sin x + 1 = 0\]
\[ \Rightarrow (1 - \sin^2 x) + \sin x + 1 = 0\]
\[ \Rightarrow 1 - \sin^2 x + \sin x + 1 = 0\]
\[ \Rightarrow \sin^2 x - \sin x - 2 = 0\]
\[ \Rightarrow \sin^2 x - 2 \sin x + \sin x - 2 = 0\]
\[ \Rightarrow \sin x (\sin x - 2) + 1 (\sin x - 2) = 0\]
\[ \Rightarrow (\sin x - 2) (\sin x + 1) = 0\]
\[\Rightarrow \sin x = 2\] or \[\sin x = - 1\]
\[\sin x = 2\] is not possible.
\[\Rightarrow \sin x = - 1\]
∴ \[\sin x = \sin \frac{3\pi}{2}\]
Hence, x lies in \[\left( \frac{5\pi}{4}, \frac{7\pi}{4} \right)\].
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
The minimum value of 3cosx + 4sinx + 8 is ______.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.