English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Solve the following equations:sin θ + cos θ = 2 - Mathematics

Advertisements
Advertisements

Question

Solve the following equations:
sin θ + cos θ = `sqrt(2)`

Sum

Solution

Divide each term by `sqrt(2)`

`1/sqrt(2) sin theta + 1/sqrt(2) cos theta = sqrt(2)/sqrt(2)`

`sin pi/4 sin theta + cos pi/4 cos theta` = 1

`cos theta * cos  pi/4 + sin theta * sin  pi/4` = 1

`cos (theta - pi/4)` = 1

`cos (theta - pi/4)` = cos θ

The general solution is

`theta - pi/4` = 2nπ, n ∈ Z

θ = `2"n"pi + pi/4`, n ∈ Z

θ = `(8"n"pi + pi)/4`, n ∈ Z

θ = `(8"n" + 1)  pi/4`, n ∈ Z

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.8 [Page 133]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.8 | Q 3. (vi) | Page 133

RELATED QUESTIONS

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×