Advertisements
Advertisements
Question
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solution
Divide each term by `sqrt(2)`
`1/sqrt(2) sin theta + 1/sqrt(2) cos theta = sqrt(2)/sqrt(2)`
`sin pi/4 sin theta + cos pi/4 cos theta` = 1
`cos theta * cos pi/4 + sin theta * sin pi/4` = 1
`cos (theta - pi/4)` = 1
`cos (theta - pi/4)` = cos θ
The general solution is
`theta - pi/4` = 2nπ, n ∈ Z
θ = `2"n"pi + pi/4`, n ∈ Z
θ = `(8"n"pi + pi)/4`, n ∈ Z
θ = `(8"n" + 1) pi/4`, n ∈ Z
APPEARS IN
RELATED QUESTIONS
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.