English

If Tan X + Sec X = √ 3 , 0 < X < π, Then X is Equal to - Mathematics

Advertisements
Advertisements

Question

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to

Options

  • \[\frac{5\pi}{6}\]

     

  • \[\frac{2\pi}{3}\]

     

  • \[\frac{\pi}{6}\]

     

  • \[\frac{\pi}{3}\]
MCQ

Solution

\[\frac{\pi}{6}\]
We have: 
\[\tan x + \sec x = \sqrt{3} \left[ 0 < x < \pi \right]\]
\[ \Rightarrow sec x + \tan x = \sqrt{3}\]
\[ \Rightarrow \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \sqrt{3}\]
\[ \Rightarrow 1 + \sin x=\sqrt{3}\cos x\]
\[\Rightarrow \left( 1 + \sin x \right)^2 = \left( \sqrt{3} \cos x \right)^2 \]
\[ \Rightarrow 1 + \sin^2 x + 2\sin x = 3 \cos^2 x\]
\[ \Rightarrow 1 + \sin^2 x + 2\sin x = 3(1 - \sin^2 x)\]
\[ \Rightarrow 4 \sin^2 x + 2\sin x = 2\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow \sin x = - 1, \frac{1}{2}\]
\[\text{ Since }0 < x < \pi, \sin x \text{ cannot be negative .} \]
\[ \therefore \sin x = \frac{1}{2}\]
\[ \therefore x = \frac{\pi}{6} \]
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 8 | Page 41

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation sin 2x + cos x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×