Advertisements
Advertisements
Question
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
Solution
The given equation is \[2 \sin^2 x = 3\cos x\].
Now,
\[2 \sin^2 x = 3\cos x\]
\[ \Rightarrow 2\left( 1 - \cos^2 x \right) = 3\cos x\]
\[ \Rightarrow 2 \cos^2 x + 3\cos x - 2 = 0\]
\[ \Rightarrow \left( 2\cos x - 1 \right)\left( \cos x + 2 \right) = 0\]
But,
cos x = -2 is not possible
\[\therefore \cos x = \frac{1}{2} = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in Z \left( \cos x = \cos\alpha \Rightarrow x = 2n\pi \pm \alpha, n \in Z \right)\]
Putting n = 0 and n = 1, we get
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Prove that:
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x