Advertisements
Advertisements
Question
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Solution
Given that: sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
⇒ (sin3x + sinx) – 3sin2x = (cos3x + cosx) – 3cos2x
⇒ `2sin((3x + x)/2) . cos((3x - x)/2) - 3sin2x = 2cos((3x + x)/2).cos((3x - x)/2) - 3cos2x`
⇒ 2sin2x . cosx – 3sin2x = 2cos2x . cosx – 3cos2x
⇒ 2sin2x cosx – 2cos2x . cosx = 3sin2x – 3cos2x
⇒ 2cosx (sin2x – cos2x) = 3(sin2x – cos2x)
⇒ 2cosx(sin2x – cos2x) – 3(sin2x – cos2x) = 0
⇒ (sin2x – cos2x)(2cosx – 3) = 0
⇒ sin2x – cos2x = 0 and 2cosx – 3 ≠ 0 ....[∵ – 1 ≤ cos x ≤ 1]
⇒ `(sin2x)/(cos2x) - 1` = 0
⇒ tan2x = 1
⇒ tan2x = `tan pi/4`
⇒ 2x = `npi + pi/4`
∴ x = `(npi)/2 + pi/8`
Hence, the general solution of the equation is x = `(npi)/2 + pi/8`, n ∈ Z.
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Which of the following is correct?
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0