English

Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x

Sum

Solution

Given that: sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x

⇒ (sin3x + sinx) – 3sin2x = (cos3x + cosx) – 3cos2x

⇒ `2sin((3x + x)/2) . cos((3x - x)/2) - 3sin2x = 2cos((3x + x)/2).cos((3x - x)/2) - 3cos2x`

⇒ 2sin2x . cosx – 3sin2x = 2cos2x . cosx – 3cos2x

⇒ 2sin2x cosx – 2cos2x . cosx = 3sin2x – 3cos2x

⇒ 2cosx (sin2x – cos2x) = 3(sin2x – cos2x)

⇒ 2cosx(sin2x – cos2x) – 3(sin2x – cos2x) = 0

⇒ (sin2x – cos2x)(2cosx – 3) = 0

⇒ sin2x – cos2x = 0 and 2cosx – 3 ≠ 0   ....[∵ – 1 ≤ cos x ≤ 1]

⇒ `(sin2x)/(cos2x) - 1` = 0

⇒ tan2x = 1

⇒ tan2x = `tan  pi/4`

⇒ 2x = `npi + pi/4`

∴ x = `(npi)/2 + pi/8`

Hence, the general solution of the equation is x = `(npi)/2 + pi/8`, n ∈ Z.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 55]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 28 | Page 55

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is correct?


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×