English

If A lies in second quadrant 3tanA + 4 = 0, then the value of 2cotA − 5cosA + sinA is equal to - Mathematics

Advertisements
Advertisements

Question

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to

Options

  • \[- \frac{53}{10}\]

     

  • \[\frac{23}{10}\]

     

  • \[\frac{37}{10}\]

     

  • \[\frac{7}{10}\]

     

MCQ

Solution

It is given that \[\frac{\pi}{2} < A < \pi\].

\[3\tan A + 4 = 0\]

\[ \Rightarrow \tan A = - \frac{4}{3}\]

\[ \Rightarrow \cot A = - \frac{3}{4}\]
Now,
\[\sec A = \pm \sqrt{1 + \tan^2 A} = \pm \sqrt{1 + \frac{16}{9}} = \pm \sqrt{\frac{25}{9}} = \pm \frac{5}{3}\]
\[ \therefore \sec A = - \frac{5}{3} \left( \text{ A lies in 2nd quadrant }\right)\]
\[ \Rightarrow \cos A = - \frac{3}{5}\]
Also,

\[\sin A = \pm \sqrt{1 - \cos^2 A} = \pm \sqrt{1 - \frac{9}{25}} = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}\]

\[ \therefore \sin A = \frac{4}{5} \left( \text{ A lies in 2nd quadrant }\right)\]

So,
\[2\cot A - 5\cos A + \sin A\]
\[ = 2 \times \left( - \frac{3}{4} \right) - 5 \times \left( - \frac{3}{5} \right) + \frac{4}{5}\]
\[ = - \frac{3}{2} + 3 + \frac{4}{5}\]
\[ = \frac{- 15 + 30 + 8}{10}\]
\[ = \frac{23}{10}\]

Hence, the correct answer is option B.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 20 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If sec x + tan x = k, cos x =


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3tanx + cot x = 5 cosec x


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


General solution of \[\tan 5 x = \cot 2 x\] is


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×