Advertisements
Advertisements
प्रश्न
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
पर्याय
- \[- \frac{53}{10}\]
- \[\frac{23}{10}\]
- \[\frac{37}{10}\]
- \[\frac{7}{10}\]
उत्तर
It is given that \[\frac{\pi}{2} < A < \pi\].
\[3\tan A + 4 = 0\]
\[ \Rightarrow \tan A = - \frac{4}{3}\]
\[ \Rightarrow \cot A = - \frac{3}{4}\]
Now,
\[\sec A = \pm \sqrt{1 + \tan^2 A} = \pm \sqrt{1 + \frac{16}{9}} = \pm \sqrt{\frac{25}{9}} = \pm \frac{5}{3}\]
\[ \therefore \sec A = - \frac{5}{3} \left( \text{ A lies in 2nd quadrant }\right)\]
\[ \Rightarrow \cos A = - \frac{3}{5}\]
Also,
\[\sin A = \pm \sqrt{1 - \cos^2 A} = \pm \sqrt{1 - \frac{9}{25}} = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}\]
\[ \therefore \sin A = \frac{4}{5} \left( \text{ A lies in 2nd quadrant }\right)\]
So,
\[2\cot A - 5\cos A + \sin A\]
\[ = 2 \times \left( - \frac{3}{4} \right) - 5 \times \left( - \frac{3}{5} \right) + \frac{4}{5}\]
\[ = - \frac{3}{2} + 3 + \frac{4}{5}\]
\[ = \frac{- 15 + 30 + 8}{10}\]
\[ = \frac{23}{10}\]
Hence, the correct answer is option B.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of cosec x = –2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.