Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[\sin 2x - \sin 4x + \sin 6x = 0\].
\[\Rightarrow 2 \sin \left( \frac{8x}{2} \right) \cos \left( \frac{4x}{2} \right) - \sin4x = 0\]
\[ \Rightarrow 2 \sin4x \cos2x - \sin4x = 0\]
\[ \Rightarrow \sin4x ( 2 \cos2x - 1) = 0\]
\[\Rightarrow 4x = n\pi\],
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.