Advertisements
Advertisements
प्रश्न
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
उत्तर
2 sin2x – 3 sin x + 1 = 0
2 sin2x – 2 sin x – sin x + 1 = 0
2 sin x (sin x – 1) – 1(sin x – 1) = 0
(2 sin x – 1)(sin x – 1) = 0
2 sin x – 1 = 0 or sin x – 1 = 0
sin x = `1/2` or sin x = 1
To find the solution of sin x = `1/2`
sin x = `1/2`
sin x = `sin (pi/6)`
The general solution is x = `"n"pi + (-1)^"n" pi/6`, n ∈ z
When n = 0, x = `0 + pi/6 = pi/6` ∈ (0°, 360°)
When n = 1, x = `pi - pi/6 = (6pi - pi)/6 = (5pi)/6` ∈ (0°, 360°)
When n = 2, x = `2pi + pi/6 = (12pi - pi)/6 = (13pi)/6` ∉ (0°, 360°)
To find the solution od sin x = 1
sin x = 1
sin x = `sin (pi/2)`
The general solution is x = `"n"pi + (-1)^"n" pi/2`, n ∈ z
When n = 0, x = `0 + pi/2 = pi/2` ∈ (0°, 360°)
When n = 1, x = `pi - pi/2 = (2pi - pi)/2 = pi/2` ∈ (0°, 360°)
When n = 2, x = `2pi + pi/2 = (4pi - pi)/2 = (5pi)/2` ∉ (0°, 360°)
∴ The required solutions are x = `pi/6, (5pi)/6, pi/2`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Write the number of points of intersection of the curves
If \[\cot x - \tan x = \sec x\], then, x is equal to
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to