मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360° 2 sin2x + 1 = 3 sin x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x

बेरीज

उत्तर

2 sin2x – 3 sin x + 1 = 0

2 sin2x – 2 sin x – sin x + 1 = 0

2 sin x (sin x – 1) – 1(sin x – 1) = 0

(2 sin x – 1)(sin x – 1) = 0

2 sin x – 1 = 0 or sin x – 1 = 0

sin x = `1/2` or sin x = 1

To find the solution of sin x = `1/2`

sin x = `1/2`

sin x = `sin (pi/6)`

The general solution is x = `"n"pi + (-1)^"n"  pi/6`, n ∈ z

When n = 0, x = `0 + pi/6 = pi/6` ∈ (0°, 360°)

When n = 1, x = `pi - pi/6 = (6pi - pi)/6 = (5pi)/6` ∈ (0°, 360°)

When n = 2, x = `2pi + pi/6 = (12pi - pi)/6 = (13pi)/6` ∉ (0°, 360°)

To find the solution od sin x = 1

sin x = 1

sin x = `sin (pi/2)`

The general solution is x = `"n"pi + (-1)^"n"  pi/2`, n ∈ z

When n = 0, x = `0 + pi/2 = pi/2` ∈ (0°, 360°)

When n = 1, x = `pi - pi/2 = (2pi - pi)/2 = pi/2` ∈ (0°, 360°)

When n = 2, x = `2pi + pi/2 = (4pi - pi)/2 = (5pi)/2` ∉ (0°, 360°)

∴ The required solutions are x = `pi/6, (5pi)/6, pi/2` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 2. (iii) | पृष्ठ १३३

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×