मराठी

Prove That: Sec ( 3 π 2 − X ) Sec ( X − 5 π 2 ) + Tan ( 5 π 2 + X ) Tan ( X − 3 π 2 ) = − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]

उत्तर

LHS = \[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right)\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left[ - \left( \frac{5\pi}{2} - x \right) \right] + \tan\left( \frac{5\pi}{2} + x \right)\tan\left[ - \left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) + \tan\left( \frac{5\pi}{2} + x \right)\left[ - \tan\left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) - \tan\left( \frac{5\pi}{2} + x \right)\tan\left( \frac{3\pi}{2} - x \right)\]
\[ = \sec\left( \frac{\pi}{2} \times 3 - x \right)\sec\left( \frac{\pi}{2} \times 5 - x \right) - \tan\left( \frac{\pi}{2} \times 5 + x \right)\tan\left( \frac{\pi}{2} \times 3 - x \right)\]
\[ = \left[ - cosec x \right]\left[ cosec x \right] - \left[ - \cot x \right]\cot x \]
\[ = - {cosec}^2 x + \cot^2 x\]
\[ = - \left[ {cosec}^2 x - \cot^2 x \right]\]
\[ = - 1\]
 = RHS
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.3 | Q 5 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×