Advertisements
Advertisements
प्रश्न
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
उत्तर
A, B, C and D are the angles of a cyclic quadrilateral.
\[ \therefore A + C = 180^\circ and B + D = 180^\circ\]
\[ \Rightarrow A = 180 - C and B = 180 - D\]
\[\text{ Now, LHS }= \cos\left( 180^\circ - A \right) + \cos\left( 180^\circ + B \right) + \cos\left( 180^\circ + C \right) - \sin\left( 90^\circ + D \right)\]
\[ = - \cos A + \left[ - \cos B \right] + \left[ - \cos C \right] - \cos D\]
\[ = - \cos A - \cos B - \cos C - \cos D\]
\[ = - \cos\left( 180^\circ - C \right) - \cos\left( 180^\circ - D \right) - \cos C - \cos D\]
\[ = - \left[ - \cos C \right] - \left[ - \cos D \right] - \cos C - \cos D\]
\[ = \cos C + \cos D - \cos C - \cos D\]
\[ = 0\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.