मराठी

Prove That: Sin 2 π 18 + Sin 2 π 9 + Sin 2 7 π 18 + Sin 2 4 π 9 = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

उत्तर

LHS = \[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9}\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{8\pi}{18}\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{8\pi}{18} \right)\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \left( \frac{\pi}{2} - \frac{2\pi}{18} \right) + \sin^2 \left( \frac{\pi}{2} - \frac{\pi}{18} \right)\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \cos^2 \frac{2\pi}{18} + \cos^2 \frac{\pi}{18}\]
\[ = \sin^2 \frac{\pi}{18} + \cos^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \cos^2 \frac{2\pi}{18}\]
\[ = 1 + 1\]
\[ = 2\]
 = RHS
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.3 | Q 4 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the general solutions of tan2 2x = 1.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×