Advertisements
Advertisements
प्रश्न
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
पर्याय
AP
GP
HP
none of these
उत्तर
AP
Given:
\[\tan px - \tan qx = 0\]
\[\Rightarrow \tan px = \tan qx\]
\[ \Rightarrow \frac{\sin px}{\cos px} = \frac{\sin qx}{\cos qx}\]
\[ \Rightarrow \sin px \cos qx = \sin qx \cos px\]
\[ \Rightarrow \frac{1}{2}\left[ \sin\left( \frac{p + q}{2} \right)x + \sin\left( \frac{p - q}{2} \right)x \right] = \frac{1}{2}\left[ \sin\left( \frac{q + p}{2} \right)x + \sin\left( \frac{q - p}{2} \right)x \right]\]
Now,
\[\sin A \cos B = \frac{1}{2}\left[ \sin\left( \frac{A + B}{2} \right) + \sin\left( \frac{A - B}{2} \right) \right]\]
\[\Rightarrow \sin \left( \frac{p - q}{2} \right)x = \sin \left( \frac{q - p}{2} \right)x\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = - \sin \left( \frac{p - q}{2} \right)x\]
\[ \Rightarrow 2 \sin \left( \frac{p - q}{2} \right)x = 0\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = 0\]
\[\Rightarrow \left( \frac{p - q}{2} \right)x = n\pi, n \in Z\]
\[ \Rightarrow x = \frac{2n\pi}{(p - q)}, n \in Z\]
Now, on putting the value of
n, we get: \[n = 1, x = \frac{2\pi}{(p - q)}\]= a1
And so on.
Also,
\[d = a_2 - a_1 = \frac{4\pi}{(p - q)} - \frac{2\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_3 - a_2 = \frac{6\pi}{(p - q)} - \frac{4\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_4 - a_3 = \frac{8\pi}{(p - q)} - \frac{6\pi}{( p - q)} = \frac{2\pi}{(p - q)}\]
And so on.
Thus, x forms a series in AP.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{a}{b},\] show that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
In a ∆ABC, prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
The minimum value of 3cosx + 4sinx + 8 is ______.