मराठी

If √ 3 Cos X + Sin X = √ 2 , Then General Value of ​X is - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is

पर्याय

  • \[n \pi + \left( - 1 \right)^n \frac{\pi}{4}, n \in Z\]

     

  • \[\left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

  • \[n \pi + \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

     

  • \[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

MCQ
बेरीज

उत्तर

\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
Given equation:
\[\sqrt{3}\cos x + \sin x = \sqrt{2}\]  ...(i)
This is of the form \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3} , b = 1\] and \[c = \sqrt{2}\].
Let: a = r sin α and b = r sin α.
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\]
And,
\[\tan \alpha = \frac{a}{b} \]
\[ \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
Putting 
\[a = \sqrt{3} = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (i), we get:

\[r \cos x \sin\alpha + r \sin x \cos\alpha = \sqrt{2}\]

\[ \Rightarrow r \sin (x + \alpha) = \sqrt{2}\]

\[ \Rightarrow 2 \sin (x + \alpha) = \sqrt{2}\]

\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \cos \frac{\pi}{4}\]

\[ \Rightarrow x + \frac{\pi}{3} = n\pi + ( - 1 )^n \frac{\pi}{4}, n \in Z\]

\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 17 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 4 x = cos 2 x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×