Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
Given:
\[ \Rightarrow \tan x + \tan 2x = \frac{\tan x + \tan2x}{1 - \tan x \tan2x}\]
\[ \Rightarrow \tan x + \tan2x - \frac{\tan x + \tan2x}{1 - \tan x \tan2x} = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x \tan2x) - (\tan x + \tan2x) = 0\]
\[ \Rightarrow (\tan x + \tan 2x) (1 - \tan x \tan2x - 1) = 0\]
\[ \Rightarrow (\tan x + \tan2x) ( - \tan x \tan2x) = 0\]
Now,
\[\tan x + \tan 2x = 0 \]
\[ \Rightarrow \tan x = - \tan 2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x, n \in Z\]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]
And,
\[\tan x + \tan 2x = 0 \]
\[ \Rightarrow \tan x = - \tan 2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x, n \in Z\]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]
∴ \[x = \frac{n\pi}{3}, n \in Z\] or
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[\tan x = \frac{a}{b},\] show that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
Write the solution set of the equation
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
The minimum value of 3cosx + 4sinx + 8 is ______.