मराठी

Solve the Following Equation: Tan X + Tan 2 X = Tan 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]
बेरीज

उत्तर

Given:

\[\tan x + \tan2x = \tan3x\]
Now, 
\[\tan x + \tan2x = \tan (x + 2x)\]
\[ \Rightarrow \tan x + \tan 2x = \frac{\tan x + \tan2x}{1 - \tan x \tan2x}\]
\[ \Rightarrow \tan x + \tan2x - \frac{\tan x + \tan2x}{1 - \tan x \tan2x} = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x \tan2x) - (\tan x + \tan2x) = 0\]
\[ \Rightarrow (\tan x + \tan 2x) (1 - \tan x \tan2x - 1) = 0\]
\[ \Rightarrow (\tan x + \tan2x) ( - \tan x \tan2x) = 0\]
\[\Rightarrow \tan x + \tan 2x = 0\] or
\[\tan x \tan2x = 0\]

Now,

\[\tan x + \tan 2x = 0 \]
\[ \Rightarrow \tan x = - \tan 2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x, n \in Z\]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]

And,

\[\tan x + \tan 2x = 0 \]
\[ \Rightarrow \tan x = - \tan 2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x, n \in Z\]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]

∴ \[x = \frac{n\pi}{3}, n \in Z\] or

\[x = \frac{n\pi}{3}, n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 5.2 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×