मराठी

The General Value of X Satisfying the Equation √ 3 Sin X + Cos X = √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]

पर्याय

  • \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{4} + \frac{\pi}{3}, n \in Z\]

     

  • \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} + \frac{\pi}{6}, n \in Z\]

  • \[x = n\pi \pm \frac{\pi}{6}, n \in Z\]

     

  • \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]

MCQ
बेरीज

उत्तर

\[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} - \frac{\pi}{6}, n \in Z\]
Given: 

\[\sqrt{3} \sin x + \cos x = \sqrt{3}\] ...(i)
This equation is of the form 
\[a \sin\theta + b \cos\theta = c\], where
\[a = \sqrt{3}, b = 1\] and \[c = \sqrt{3}\].
Let: a = r cos α and b = r sin α
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and 
\[\tan\alpha = \frac{b}{a} \Rightarrow \tan\alpha = \frac{1}{\sqrt{3}}\]
`=>alpha = pi/6` On putting \[a = \sqrt{3} = r \cos\alpha\] and \[b = 1 = r \sin\alpha\] in equation (i),  we get:
\[r \cos\alpha \sin x + r \sin\alpha \cos x = \sqrt{3}\]
\[ \Rightarrow r \sin (x + \alpha) = \sqrt{3}\]
\[ \Rightarrow 2 \sin ( x + \alpha) = \sqrt{3}\]
\[ \Rightarrow \sin (x + \alpha) = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin (x + \alpha) = \sin \frac{\pi}{3}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{6} \right) = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{3} - \frac{\pi}{6} , n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 8 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×