Advertisements
Advertisements
प्रश्न
If tan θ + sec θ =ex, then cos θ equals
पर्याय
- \[\frac{e^x + e^{- x}}{2}\]
- \[\frac{2}{e^x + e^{- x}}\]
- \[\frac{e^x - e^{- x}}{2}\]
- \[\frac{e^x - e^{- x}}{e^x + e^{- x}}\]
उत्तर
We have:
\[ \tan \theta + \sec \theta = e^x \]
\[ \sec \theta + \tan \theta = e^x \left( 1 \right)\]
\[ \Rightarrow \frac{1}{sec\theta + tan\theta} = \frac{1}{e^x}\]
\[ \Rightarrow \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta + \tan \theta} = \frac{1}{e^x}\]
\[ \Rightarrow \frac{\left( \sec \theta + \tan \theta \right)\left( \sec \theta - \tan \theta \right)}{\left( \sec \theta + \tan \theta \right)} = \frac{1}{e^x}\]
\[ \therefore sec\theta-\tan\theta = \frac{1}{e^x} \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\sec \theta = e^x + \frac{1}{e^x}\]
\[ \Rightarrow 2\sec \theta = \frac{\left( e^x \right)^2 + 1}{e^x}\]
\[ \Rightarrow \sec \theta = \frac{e^{2x} + 1}{2 e^x}\]
\[ \Rightarrow \sec \theta = \frac{1}{2} \times \frac{e^{2x} + 1}{e^x}\]
\[ \Rightarrow \sec \theta = \frac{1}{2}\times\left( e^x + e^{- x} \right)\]
\[ \Rightarrow \frac{1}{\cos \theta} = \frac{e^x + e^{- x}}{2}\]
\[ \Rightarrow \cos\theta = \frac{2}{e^x + e^{- x}}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
The smallest positive angle which satisfies the equation
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.