मराठी

If Tan θ + Sec θ =Ex, Then Cos θ Equals - Mathematics

Advertisements
Advertisements

प्रश्न

If tan θ + sec θ =ex, then cos θ equals

पर्याय

  • \[\frac{e^x + e^{- x}}{2}\]

     

  • \[\frac{2}{e^x + e^{- x}}\]

     

  • \[\frac{e^x - e^{- x}}{2}\]

     

  • \[\frac{e^x - e^{- x}}{e^x + e^{- x}}\]

     

MCQ

उत्तर

\[\frac{2}{e^x + e^{- x}}\]

We have:
\[ \tan \theta + \sec \theta = e^x \]

\[ \sec \theta + \tan \theta = e^x \left( 1 \right)\]

\[ \Rightarrow \frac{1}{sec\theta + tan\theta} = \frac{1}{e^x}\]

\[ \Rightarrow \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta + \tan \theta} = \frac{1}{e^x}\]

\[ \Rightarrow \frac{\left( \sec \theta + \tan \theta \right)\left( \sec \theta - \tan \theta \right)}{\left( \sec \theta + \tan \theta \right)} = \frac{1}{e^x}\]

\[ \therefore sec\theta-\tan\theta = \frac{1}{e^x} \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\sec \theta = e^x + \frac{1}{e^x}\]

\[ \Rightarrow 2\sec \theta = \frac{\left( e^x \right)^2 + 1}{e^x}\]

\[ \Rightarrow \sec \theta = \frac{e^{2x} + 1}{2 e^x}\]

\[ \Rightarrow \sec \theta = \frac{1}{2} \times \frac{e^{2x} + 1}{e^x}\]

\[ \Rightarrow \sec \theta = \frac{1}{2}\times\left( e^x + e^{- x} \right)\]

\[ \Rightarrow \frac{1}{\cos \theta} = \frac{e^x + e^{- x}}{2}\]

\[ \Rightarrow \cos\theta = \frac{2}{e^x + e^{- x}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 22 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

General solution of \[\tan 5 x = \cot 2 x\] is


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×