मराठी

Find the general solution of the following equation: sin⁡3x+cos⁡2x=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]
बेरीज

उत्तर

Given,

sin 3x + cos 2x = 0

We know that: sin θ = cos `(π/2 - theta)`

∴ cos 2x = −sin 3x

⇒ cos 2x = −cos`(pi/2- 3x)`

We know that: −cos θ = cos (π – θ)

∴ cos 2x = cos`(pi - (pi/2 - 3x))`

⇒ cos 2x cos `(pi/2 + 3x)`

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

From above expression and on comparison with standard equation we have:

`y = (pi/2 + 3x)`

∴ 2x = 2nπ ± `(pi/2 + 3x)`

Hence, 

`2x = 2npi + pi/2 + 3x or 2x = 2npi - pi/2 - 3x`

∴ `x = -pi/2 - 2npi or 5x = 2npi - pi/2`

⇒ `x = -pi/2 (1 + 4n) or x = pi/10 (4n - 1)`

∴ `x = -pi/2 (4n + 1) or pi/10 (4n - 1)`, where n ∈ Z

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 2.12 | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


sin6 A + cos6 A + 3 sin2 A cos2 A =


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Which of the following is correct?


Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×