Advertisements
Advertisements
प्रश्न
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
पर्याय
1
2
3
4
उत्तर
2
\[\sin^2 x - \cos x = \frac{1}{4}\]
\[ \Rightarrow (1 - \cos^2 x) - \cos x = \frac{1}{4}\]
\[ \Rightarrow 4 - 4 \cos^2 x - 4 \cos x = 1\]
\[ \Rightarrow 4 \cos^2 x + 4 \cos x - 3 = 0\]
\[ \Rightarrow 4 \cos^2 x + 6 \cos x - 2 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x ( 2 \cos x + 3) - 1 ( 2 \cos x + 3) = 0\]
\[ \Rightarrow (2 \cos x + 3 ) (2 \cos x - 1) = 0\]
\[\Rightarrow 2 \cos x + 3 = 0\] or, \[2 \cos x - 1 = 0\]
\[\Rightarrow \cos x = - \frac{3}{2}\] or \[\cos x = \frac{1}{2}\]
Here,
\[\cos x = - \frac{3}{2}\] is not possible.
\[\cos x = \frac{1}{2}\]
\[\Rightarrow \cos x = \cos \frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}\]
Now for n = 0 and 1, the values of \[x are \frac{\pi}{3}, \frac{5\pi}{3}\text{ and }\frac{7\pi}{3},\text{ but }\frac{7\pi}{3} \text{ is not in }\] \[\left[ 0, 2\pi \right]\]
Hence, there are two solutions in \[\left[ 0, 2\pi \right]\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
In a ∆ABC, prove that:
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Write the general solutions of tan2 2x = 1.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.