मराठी

Solve the Following Equation: Sin 3 X − Sin X = 4 Cos 2 X − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]
टीपा लिहा
बेरीज

उत्तर

\[\sin3x - \sin x = 4 \cos^2 x - 2\]

\[\Rightarrow \sin3x - \sin x = 2 ( 2 \cos^2 x - 1)\]
\[ \Rightarrow 2 \sin \left( \frac{2x}{2} \right) \cos \left( \frac{4x}{2} \right) = 2 \cos 2x\]
\[ \Rightarrow 2 \sin x \cos2x = 2 \cos2x\]
\[ \Rightarrow \sin x \cos2x = \cos2x\]
\[ \Rightarrow \cos2x ( \sin x - 1) = 0 \]

\[\Rightarrow \cos 2x = 0\] or
\[\sin x - 1 = 0\]

⇒ \[\cos 2x = \cos \frac{\pi}{2}\] or

\[\sin x = 1 \Rightarrow \sin x = \sin \frac{\pi}{2}\]
\[\Rightarrow 2x = (2n + 1)\frac{\pi}{2}\],
\[n \in Z\] or
\[x = n\pi + ( - 1 )^n \frac{\pi}{2} , n \in Z\]
\[\Rightarrow x = (2n \hspace{0.167em} + 1)\frac{\pi}{4} , n \in Z\] or
\[x = n\pi + ( - 1 )^n \frac{\pi}{2} , n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 4.8 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If sec x + tan x = k, cos x =


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×