Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
\[\Rightarrow \tan mx = - \cot nx\]
\[ \Rightarrow \tan mx = \tan \left( \frac{\pi}{2} + nx \right)\]
\[ \Rightarrow mx = r\pi + \left( \frac{\pi}{2} + nx \right), r \in Z\]
\[ \Rightarrow (m - n) x = r\pi + \frac{\pi}{2}, r \in Z\]
\[ \Rightarrow x = \left( \frac{2r + 1}{m - n} \right)\frac{\pi}{2}, r \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[\cot x - \tan x = \sec x\], then, x is equal to
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0