मराठी

If Sec X + Tan X = K, Cos X = - Mathematics

Advertisements
Advertisements

प्रश्न

If sec x + tan x = k, cos x =

पर्याय

  • \[\frac{k^2 + 1}{2k}\]

     

  • \[\frac{2k}{k^2 + 1}\]

     

  • \[\frac{k}{k^2 + 1}\]

     

  • \[\frac{k}{k^2 - 1}\]

     

MCQ

उत्तर

\[\frac{2k}{k^2 + 1}\]

We have:

\[\sec x + \tan x = k \left( 1 \right)\]

\[ \Rightarrow \frac{1}{\sec x + \tan x} = \frac{1}{k}\]

\[ \Rightarrow \frac{\sec^2 x - \tan^2 x}{\sec x + \tan x} = \frac{1}{k}\]

\[ \Rightarrow \frac{\left( \sec x + \tan x \right)\left( \sec x - \tan x \right)}{\left( \sec x + \tan x \right)} = \frac{1}{k}\]

\[ \therefore \sec x-\tan x = \frac{1}{k} \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\sec x = k + \frac{1}{k}\]

\[ \Rightarrow 2\sec x = \frac{k^2 + 1}{k}\]

\[ \Rightarrow \sec x = \frac{k^2 + 1}{2k}\]

\[ \Rightarrow \frac{1}{\cos x} = \frac{k^2 + 1}{2k}\]

\[ \Rightarrow \cos x = \frac{2k}{k^2 + 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 23 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×