Advertisements
Advertisements
प्रश्न
If sec x + tan x = k, cos x =
पर्याय
- \[\frac{k^2 + 1}{2k}\]
- \[\frac{2k}{k^2 + 1}\]
- \[\frac{k}{k^2 + 1}\]
- \[\frac{k}{k^2 - 1}\]
उत्तर
We have:
\[\sec x + \tan x = k \left( 1 \right)\]
\[ \Rightarrow \frac{1}{\sec x + \tan x} = \frac{1}{k}\]
\[ \Rightarrow \frac{\sec^2 x - \tan^2 x}{\sec x + \tan x} = \frac{1}{k}\]
\[ \Rightarrow \frac{\left( \sec x + \tan x \right)\left( \sec x - \tan x \right)}{\left( \sec x + \tan x \right)} = \frac{1}{k}\]
\[ \therefore \sec x-\tan x = \frac{1}{k} \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\sec x = k + \frac{1}{k}\]
\[ \Rightarrow 2\sec x = \frac{k^2 + 1}{k}\]
\[ \Rightarrow \sec x = \frac{k^2 + 1}{2k}\]
\[ \Rightarrow \frac{1}{\cos x} = \frac{k^2 + 1}{2k}\]
\[ \Rightarrow \cos x = \frac{2k}{k^2 + 1}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the set of values of a for which the equation
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0