Advertisements
Advertisements
प्रश्न
If sec x + tan x = k, cos x =
विकल्प
- \[\frac{k^2 + 1}{2k}\]
- \[\frac{2k}{k^2 + 1}\]
- \[\frac{k}{k^2 + 1}\]
- \[\frac{k}{k^2 - 1}\]
उत्तर
We have:
\[\sec x + \tan x = k \left( 1 \right)\]
\[ \Rightarrow \frac{1}{\sec x + \tan x} = \frac{1}{k}\]
\[ \Rightarrow \frac{\sec^2 x - \tan^2 x}{\sec x + \tan x} = \frac{1}{k}\]
\[ \Rightarrow \frac{\left( \sec x + \tan x \right)\left( \sec x - \tan x \right)}{\left( \sec x + \tan x \right)} = \frac{1}{k}\]
\[ \therefore \sec x-\tan x = \frac{1}{k} \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\sec x = k + \frac{1}{k}\]
\[ \Rightarrow 2\sec x = \frac{k^2 + 1}{k}\]
\[ \Rightarrow \sec x = \frac{k^2 + 1}{2k}\]
\[ \Rightarrow \frac{1}{\cos x} = \frac{k^2 + 1}{2k}\]
\[ \Rightarrow \cos x = \frac{2k}{k^2 + 1}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation sin 2x + cos x = 0
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0