हिंदी

Prove That: Sin 8 π 3 Cos 23 π 6 + Cos 13 π 3 Sin 35 π 6 = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 

उत्तर

 LHS = \[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6}\]
\[ = \sin \left( \frac{8}{3} \times 180^\circ \right) \cos \left( \frac{23}{6} \times 180^\circ \right) + \cos\left( \frac{13}{3} \times 180^\circ \right)\sin\left( \frac{35}{6} \times 180^\circ \right)\]
\[ = \sin \left( 480^\circ \right) \cos \left( 690^\circ \right) + \cos \left( 780^\circ \right) \sin \left( 1050^\circ \right)\]
\[ = \sin \left( 90^\circ \times 5 + 30^\circ \right) \cos \left( 90^\circ \times 7 + 60^\circ \right) + \cos \left( 90^\circ \times 8 + 60^\circ \right)\sin \left( 90^\circ \times 11 + 60^\circ \right)\]
\[ = \cos \left( 30^\circ \right) \sin \left( 60^\circ \right) + \cos \left( 60^\circ \right)\left[ - \cos \left( 60^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \left( - \frac{1}{2} \right)\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{2}{4}\]
\[ = \frac{1}{2}\]
= RHS
Hence proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.3 | Q 2.2 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of cosec x = –2


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is incorrect?


Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Write the general solutions of tan2 2x = 1.

 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×