हिंदी

The General Value of X Satisfying the Equation √ 3 Sin X + Cos X = √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]

विकल्प

  • \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{4} + \frac{\pi}{3}, n \in Z\]

     

  • \[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} + \frac{\pi}{6}, n \in Z\]

  • \[x = n\pi \pm \frac{\pi}{6}, n \in Z\]

     

  • \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]

MCQ
योग

उत्तर

\[x = n\pi + \left( - 1 \right)^n \frac{\pi}{3} - \frac{\pi}{6}, n \in Z\]
Given: 

\[\sqrt{3} \sin x + \cos x = \sqrt{3}\] ...(i)
This equation is of the form 
\[a \sin\theta + b \cos\theta = c\], where
\[a = \sqrt{3}, b = 1\] and \[c = \sqrt{3}\].
Let: a = r cos α and b = r sin α
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and 
\[\tan\alpha = \frac{b}{a} \Rightarrow \tan\alpha = \frac{1}{\sqrt{3}}\]
`=>alpha = pi/6` On putting \[a = \sqrt{3} = r \cos\alpha\] and \[b = 1 = r \sin\alpha\] in equation (i),  we get:
\[r \cos\alpha \sin x + r \sin\alpha \cos x = \sqrt{3}\]
\[ \Rightarrow r \sin (x + \alpha) = \sqrt{3}\]
\[ \Rightarrow 2 \sin ( x + \alpha) = \sqrt{3}\]
\[ \Rightarrow \sin (x + \alpha) = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin (x + \alpha) = \sin \frac{\pi}{3}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{6} \right) = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{3} - \frac{\pi}{6} , n \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 8 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Which of the following is correct?


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×