हिंदी

A Solution of the Equation Cos 2 X + Sin X + 1 = 0 , Lies in the Interval - Mathematics

Advertisements
Advertisements

प्रश्न

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval

विकल्प

  • \[\left( - \pi/4, \pi/4 \right)\]

     

  • \[\left( \pi/4, 3\pi/4 \right)\]

     

  • \[\left( 3\pi/4, 5\pi/4 \right)\]

     

  • \[\left( 5\pi/4, 7\pi/4 \right)\]

     

MCQ
योग

उत्तर

\[\left( 5\pi/4, 7\pi/4 \right)\]
Given:
\[\cos^2 x + \sin x + 1 = 0\]
\[ \Rightarrow (1 - \sin^2 x) + \sin x + 1 = 0\]
\[ \Rightarrow 1 - \sin^2 x + \sin x + 1 = 0\]
\[ \Rightarrow \sin^2 x - \sin x - 2 = 0\]
\[ \Rightarrow \sin^2 x - 2 \sin x + \sin x - 2 = 0\]
\[ \Rightarrow \sin x (\sin x - 2) + 1 (\sin x - 2) = 0\]
\[ \Rightarrow (\sin x - 2) (\sin x + 1) = 0\]

\[\Rightarrow \sin x - 2 = 0\] or \[\sin x + 1 = 0\]
\[\Rightarrow \sin x = 2\] or \[\sin x = - 1\]
\[\sin x = 2\] is not possible.
\[\Rightarrow \sin x = - 1\]
∴ \[\sin x = \sin \frac{3\pi}{2}\]
\[\Rightarrow x = n\pi + ( - 1 )^n \frac{3\pi}{2}, n \in Z\]
The values of x lies in the third and fourth quadrants.
Hence, x lies in \[\left( \frac{5\pi}{4}, \frac{7\pi}{4} \right)\].
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 6 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation  `cot x = -sqrt3`


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×