Advertisements
Advertisements
प्रश्न
Which of the following is correct?
विकल्प
- \[\sin1^\circ > \sin1\]
- \[\sin1^\circ < \sin1\]
- \[\sin1^\circ = \sin1\]
- \[\sin1^\circ = \frac{\pi}{180}\sin1\]
उत्तर
We know that, 1 radian is approximately 57º.
Also, the value of sin x is always increasing for \[0 \leq x \leq 90^\circ\] ( or sin x is an increasing function for \[0 \leq x \leq 90^\circ\] ).
Now,
\[1^\circ < 57^\circ\]
\[Or 1^\circ < 1\text{ radian }\]
\[ \therefore \sin1^\circ < \sin1\]
Hence, the correct answer is option \[\sin1^\circ < \sin1\].
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of cosec x = –2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
The smallest value of x satisfying the equation
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x