हिंदी

Write the Number of Solutions of the Equation 4 Sin X − 3 Cos X = 7 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]

योग

उत्तर

We have:
\[4 \sin x - 3 \cos x = 7\]
  ...(i)
The equation is of the form
\[a \sin x + b \cos x = c\], where
\[a = 4, b = - 3\] and \[c = 7\]
Now,
Let:
\[a = r \sin \alpha\] and \[a = r \sin \alpha\]
Thus, we have:
\[r = \sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5\] and
\[\tan \alpha = \frac{- 4}{3} \Rightarrow \alpha = \tan^{- 1} \left( - \frac{4}{3} \right)\]
By putting \[a = 4 = r \sin \alpha\] and \[b = - 3 = r \cos \alpha\]in equation (i), we get:
\[r \sin\alpha \sin x + r \cos\alpha \cos x = 7\]

\[\Rightarrow r \cos (x - \alpha) = 7\]

\[ \Rightarrow 5 \cos \left[ x - \tan^{- 1} \left( \frac{- 4}{3} \right) \right] = 7\]

\[ \Rightarrow \cos \left[ x - \tan^{- 1} \left( \frac{- 4}{3} \right) \right] = \frac{7}{5}\]

The solution is not possible.
Hence, the given equation has no solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.2 | Q 2 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan θ + sec θ =ex, then cos θ equals


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×