Advertisements
Advertisements
प्रश्न
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
विकल्प
sec x − tan x
sec x + tan x
tan x − sec x
none of these
उत्तर
tan x − sec x
\[\sqrt{\frac{1 - \sin x}{1 + \sin x}} \]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}}\]
\[ = \frac{\left( 1 - \sin x \right)}{- cos x} \left[\text{ as,} \frac{\pi}{2} < x < \frac{3\pi}{2},\text{ so }\cos\theta\text{ will be negative }\right]\]
\[ = - \left( sec x - \tan x \right) \]
\[ = - sec x + \tan x\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
Write the solution set of the equation
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
General solution of \[\tan 5 x = \cot 2 x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.