Advertisements
Advertisements
Question
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
Options
sec x − tan x
sec x + tan x
tan x − sec x
none of these
Solution
tan x − sec x
\[\sqrt{\frac{1 - \sin x}{1 + \sin x}} \]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}}\]
\[ = \frac{\left( 1 - \sin x \right)}{- cos x} \left[\text{ as,} \frac{\pi}{2} < x < \frac{3\pi}{2},\text{ so }\cos\theta\text{ will be negative }\right]\]
\[ = - \left( sec x - \tan x \right) \]
\[ = - sec x + \tan x\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
The minimum value of 3cosx + 4sinx + 8 is ______.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.