English

If cos x + √ 3 sin x = 2 , then x = - Mathematics

Advertisements
Advertisements

Question

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 

Options

  • \[\pi/3\]

     

  • \[2\pi/3\]

     

  • \[4\pi/6\]

     

  • \[5\pi/12\]

     

MCQ
Sum

Solution

`pi/3`
Given:
\[\cos x + \sqrt{3}\sin x = 2\] ...(i)
This equation is of the form \[a \cos x + b \sin x = c\], where

\[a = 1, b = \sqrt{3}\] and c = 2
Let: \[a = r \cos \alpha\text{ and }b = \sin \alpha\]
Now,
\[1 = r \cos \alpha , \sqrt{3} = r \sin \alpha\]
\[\Rightarrow r = \sqrt{a^2 + b^2} = \sqrt{1 + 3} = \sqrt{4} = 2\]
And,
\[\tan\alpha = \frac{b}{a} \]
\[ \Rightarrow \tan\alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan\alpha = \sqrt{3}\]
\[\Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\text{ and }b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:

\[r \cos x \cos \alpha + r \sin x \sin \alpha = 2\]

\[ \Rightarrow r \cos ( x - \alpha) = 2\]

\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]

\[ \Rightarrow x - \frac{\pi}{3} = 2n\pi \pm 0\]

\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}\]

For n = 0, x = `pi/3`

`therefore x= pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 2 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×