English

Solve the equation sin θ + sin 3θ + sin 5θ = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the equation sin θ + sin 3θ + sin 5θ = 0

Sum

Solution

We have sin θ + sin 3θ + sin 5θ = 0

or (sin θ + sin 5θ) + sin 3θ = 0

or 2 sin 3θ cos 2θ + sin 3θ = 0   

or sin 3θ (2 cos 2θ + 1) = 0

or sin 3θ = 0 or cos 2θ = `- 1/2`

When sin 3θ = 0, then 3θ = nπ or θ = `("n"pi)/3`

When cos 2θ = `-1/2`

= `cos  (2pi)/3`

Then 2θ = `2"n"pi +- (2pi)/3` or θ = `"n"pi +- pi/3`

Which gives θ = `(3"n" + 1)  pi/3` or θ = `(3"n" - 1)  pi/3`

All these values of θ are contained in θ = `("n"pi)/3` , n ∈ Z.

Hence, the required solution set is given by `{θ : θ = ("n"pi)/3, "n" ∈ "Z"}`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Solved Examples [Page 42]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Solved Examples | Q 7 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×