Advertisements
Advertisements
Question
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.
Solution
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is `underline(x^2 - (2/(sin 2A)) x + 1` = 0.
Explanation:
Given a ΔABC with ∠C = 90°
So, the equation whose roots are tanA and tanB is
x2 – (tanA + tanB)x + tanA.tanB = 0
A + B = 90° ......[∵ ∠C = 90°]
⇒ tan(A + B) = tan90°
⇒ `(tanA + tanB)/(1 - tanA tanB) = 1/0`
⇒ 1 – tanA tanB = 0
⇒ tan A tan B = 1 .......(i)
Now tanA + tanB = `sinA/cosA + sinB/cosB`
= `(sinA cosB + cosA sinB)/(cosA cosB)`
= `(sin(A + B))/(cosA cosB)`
= `(sin 90^circ)/(cosA. cos(90^circ - A))`
= `1/(cosA sinA)`
∴ tanA + tanB = `2/(2sinA cosA)`
= `2/(sin 2A)` ......(ii)
From (i) and (ii) we get
`x^2 - (2/(sin 2A)) x + 1` = 0
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
General solution of \[\tan 5 x = \cot 2 x\] is