Advertisements
Advertisements
Question
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Solution
A, B, C and D are the angles of a cyclic quadrilateral.
\[ \therefore A + C = 180^\circ and B + D = 180^\circ\]
\[ \Rightarrow A = 180 - C and B = 180 - D\]
\[\text{ Now, LHS }= \cos\left( 180^\circ - A \right) + \cos\left( 180^\circ + B \right) + \cos\left( 180^\circ + C \right) - \sin\left( 90^\circ + D \right)\]
\[ = - \cos A + \left[ - \cos B \right] + \left[ - \cos C \right] - \cos D\]
\[ = - \cos A - \cos B - \cos C - \cos D\]
\[ = - \cos\left( 180^\circ - C \right) - \cos\left( 180^\circ - D \right) - \cos C - \cos D\]
\[ = - \left[ - \cos C \right] - \left[ - \cos D \right] - \cos C - \cos D\]
\[ = \cos C + \cos D - \cos C - \cos D\]
\[ = 0\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that
Prove that
In a ∆ABC, prove that:
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cot x - \tan x = \sec x\], then, x is equal to
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.