English

Find the General Solution of the Following Equation: Tan P X = Cot Q X - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 

Sum

Solution

We have:

\[\tan px = \cot qx\]

\[\Rightarrow \tan px = \tan \left( \frac{\pi}{2} - qx \right)\]

\[ \Rightarrow px = n\pi + \left( \frac{\pi}{2} - qx \right), n \in Z\]

\[ \Rightarrow (p + q)x = n\pi + \frac{\pi}{2}, n \in Z\]

\[ \Rightarrow x = \left( \frac{2n + 1}{p + q} \right)\frac{\pi}{2}, n \in Z\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 2.09 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation sec x = 2


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
3tanx + cot x = 5 cosec x


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×