English

Solve the Following Equation: Cos X + Cos 3 X − Cos 2 X = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]
Sum

Solution

\[\cos x + \cos 3x - \cos 2x = 0\]
\[\Rightarrow 2 \cos \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) - \cos2x = 0\]
\[ \Rightarrow 2 \cos2x \cos x - \cos2x = 0\]
\[ \Rightarrow \cos2x ( 2 \cos x - 1) = 0\]

\[\Rightarrow \cos2x = 0\] or

\[2 \cos x - 1 = 0\]
\[\Rightarrow \cos2x = \cos \frac{\pi}{2}\] or
\[\cos x = \frac{1}{2} \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[\Rightarrow 2x = (2n + 1)\frac{\pi}{2}, n \in Z\] or
\[x = 2m\pi \pm \frac{\pi}{3}, m \in Z\]
\[\Rightarrow x = (2n + 1)\frac{\pi}{4}, n \in Z\] or
\[x = 2m\pi \pm \frac{\pi}{3}, m \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 4.2 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×