English

If C O S E C X + C O T X = 11 2 , Then Tan X = - Mathematics

Advertisements
Advertisements

Question

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 

Options

  • \[\frac{21}{22}\]

     

  • \[\frac{15}{16}\]

     

  • \[\frac{44}{117}\]

     

  • \[\frac{117}{43}\]

     

MCQ

Solution

\[\frac{44}{117}\]

We have: 

\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]

\[ \Rightarrow \frac{1}{cosec x + \cot x} = \frac{2}{11}\]

\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosec x + \cot x} = \frac{2}{11}$\]

\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]

\[ \therefore cosecx-\cot x = \frac{2}{11} \left( 2 \right)\]

Subtracting ( 2 ) from (1): 

\[2\cot x = \frac{11}{2} - \frac{2}{11}\]

\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]

\[ \Rightarrow 2\cot x = \frac{117}{22}\]

\[ \Rightarrow \cot x=\frac{117}{44}\]

\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]

\[ \Rightarrow \tan x = \frac{44}{117}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 21 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of cosec x = –2


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×