Advertisements
Advertisements
Question
If tan θ + sec θ =ex, then cos θ equals
Options
- \[\frac{e^x + e^{- x}}{2}\]
- \[\frac{2}{e^x + e^{- x}}\]
- \[\frac{e^x - e^{- x}}{2}\]
- \[\frac{e^x - e^{- x}}{e^x + e^{- x}}\]
Solution
We have:
\[ \tan \theta + \sec \theta = e^x \]
\[ \sec \theta + \tan \theta = e^x \left( 1 \right)\]
\[ \Rightarrow \frac{1}{sec\theta + tan\theta} = \frac{1}{e^x}\]
\[ \Rightarrow \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta + \tan \theta} = \frac{1}{e^x}\]
\[ \Rightarrow \frac{\left( \sec \theta + \tan \theta \right)\left( \sec \theta - \tan \theta \right)}{\left( \sec \theta + \tan \theta \right)} = \frac{1}{e^x}\]
\[ \therefore sec\theta-\tan\theta = \frac{1}{e^x} \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\sec \theta = e^x + \frac{1}{e^x}\]
\[ \Rightarrow 2\sec \theta = \frac{\left( e^x \right)^2 + 1}{e^x}\]
\[ \Rightarrow \sec \theta = \frac{e^{2x} + 1}{2 e^x}\]
\[ \Rightarrow \sec \theta = \frac{1}{2} \times \frac{e^{2x} + 1}{e^x}\]
\[ \Rightarrow \sec \theta = \frac{1}{2}\times\left( e^x + e^{- x} \right)\]
\[ \Rightarrow \frac{1}{\cos \theta} = \frac{e^x + e^{- x}}{2}\]
\[ \Rightarrow \cos\theta = \frac{2}{e^x + e^{- x}}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of cosec x = –2
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is correct?
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[4 \sin^2 x = 1\], then the values of x are
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.