English

If Tan θ + Sec θ =Ex, Then Cos θ Equals - Mathematics

Advertisements
Advertisements

Question

If tan θ + sec θ =ex, then cos θ equals

Options

  • \[\frac{e^x + e^{- x}}{2}\]

     

  • \[\frac{2}{e^x + e^{- x}}\]

     

  • \[\frac{e^x - e^{- x}}{2}\]

     

  • \[\frac{e^x - e^{- x}}{e^x + e^{- x}}\]

     

MCQ

Solution

\[\frac{2}{e^x + e^{- x}}\]

We have:
\[ \tan \theta + \sec \theta = e^x \]

\[ \sec \theta + \tan \theta = e^x \left( 1 \right)\]

\[ \Rightarrow \frac{1}{sec\theta + tan\theta} = \frac{1}{e^x}\]

\[ \Rightarrow \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta + \tan \theta} = \frac{1}{e^x}\]

\[ \Rightarrow \frac{\left( \sec \theta + \tan \theta \right)\left( \sec \theta - \tan \theta \right)}{\left( \sec \theta + \tan \theta \right)} = \frac{1}{e^x}\]

\[ \therefore sec\theta-\tan\theta = \frac{1}{e^x} \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\sec \theta = e^x + \frac{1}{e^x}\]

\[ \Rightarrow 2\sec \theta = \frac{\left( e^x \right)^2 + 1}{e^x}\]

\[ \Rightarrow \sec \theta = \frac{e^{2x} + 1}{2 e^x}\]

\[ \Rightarrow \sec \theta = \frac{1}{2} \times \frac{e^{2x} + 1}{e^x}\]

\[ \Rightarrow \sec \theta = \frac{1}{2}\times\left( e^x + e^{- x} \right)\]

\[ \Rightarrow \frac{1}{\cos \theta} = \frac{e^x + e^{- x}}{2}\]

\[ \Rightarrow \cos\theta = \frac{2}{e^x + e^{- x}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 22 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of cosec x = –2


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is correct?


Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×