English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Solve the following equations:sinθ+3cosθ = 1 - Mathematics

Advertisements
Advertisements

Question

Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1

Sum

Solution

Divide each term by 2

`1/2 sin theta + sqrt(3)/2 cos theta = 1/2`

`sin  pi/6 * sin theta + cos  pi/6 * cos theta = 1/2`

`cos theta * cos  pi/6 + sin theta * sin  pi/6 = 1/2`

`cos (theta - pi/6) = cos (pi/3)`

The general solution is

`theta - pi/6 = 2"n"pi +- pi/3`, n ∈ Z

θ = `2"n"pi +-  pi/3 + pi/6`, n ∈ Z

θ = `2"n"pi + pi/6 +- pi/3`, n ∈ Z

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.8 [Page 133]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.8 | Q 3. (vii) | Page 133

RELATED QUESTIONS

If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×