Advertisements
Advertisements
Question
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solution
Divide each term by 2
`1/2 sin theta + sqrt(3)/2 cos theta = 1/2`
`sin pi/6 * sin theta + cos pi/6 * cos theta = 1/2`
`cos theta * cos pi/6 + sin theta * sin pi/6 = 1/2`
`cos (theta - pi/6) = cos (pi/3)`
The general solution is
`theta - pi/6 = 2"n"pi +- pi/3`, n ∈ Z
θ = `2"n"pi +- pi/3 + pi/6`, n ∈ Z
θ = `2"n"pi + pi/6 +- pi/3`, n ∈ Z
APPEARS IN
RELATED QUESTIONS
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Find the general solution of the following equation:
Find the general solution of the following equation:
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`