English

If T N = Sin N X + Cos N X , Prove that T 3 − T 5 T 1 = T 5 − T 7 T 3 - Mathematics

Advertisements
Advertisements

Question

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 

Solution

LHS:\[\frac{T_3 - T_5}{T_1} = \frac{\left( \sin^3 x + \cos^3 x \right) - \left( \sin^5 x + \cos^5 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x - \sin^5 x + \cos^3 x - \cos^5 x}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x\left( 1 - \sin^2 x \right) + \cos^3 x\left( 1 - \cos^2 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x . \cos^2 x + c {os}^3 x . \sin^2 x}{\sin x + \cos x}\]
\[ = \frac{\sin^2 x . \cos^2 x\left( \sin x + cos x \right)}{\sin x + \cos x}\]
\[ = \sin^2 x . \cos^2 x\]
RHS:  \[\frac{T_5 - T_7}{T_3}\]
\[ = \frac{\left( \sin^5 x + \cos^5 x \right) - \left( \sin^7 x + \cos^7 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x - si n^7 x + \cos^5 x - \cos^7 x}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x\left( 1 - \sin^2 x \right) + \cos^5 x\left( 1 - \cos^2 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x \cos^2 x + \cos^5 x \sin^2 x}{\sin^3 x + \cos^3 x}\]
\[ = \sin^2 x . \cos^2 x\]
LHS = RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 26.1 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×