Advertisements
Advertisements
Question
Solve the following equation:
`cosec x = 1 + cot x`
Solution
Given,
`cosec x = 1 + cot x`
⇒ `1/sin x = 1 + cos x/sin x`
⇒ sin x + cos x = 1
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ `s 1/sqrt2 sin x + 1/sqrt2 cos x = 1/sqrt2` {dividing by √2 both sides}
⇒ `sin x sin pi/4 + cos pi/4 cos x = cos pi/4.` {cos A cos B + sin A sin B = cos(A − B)}
NOTE: The ratio of sin can also be used in place of cos; the answer stays the same, but the form may change. If you enter numbers for n, you will receive the same values in both forms.
If cos x = cos y, impls x = 2nπ ± y, where n ∈ Z
∴ `x - pi/4 = (2npi ± pi/4).`
∴ `x = (2npi ± pi/4) + pi/4` where n n ∈ Z
`x = 2npi or x = 2npi + pi/2` where n n ∈ Z
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{a}{b},\] show that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that:
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the set of values of a for which the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x