English

Solve the Following Equation: Cot X + Tan X = 2 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:
\[\cot x + \tan x = 2\]

 

Sum

Solution

\[\cot x + \tan x = 2\]
\[ \Rightarrow \frac{1}{\tan x} + \tan x = 2\]
\[ \Rightarrow \tan^2 x + 1 = 2\tan x\]
\[ \Rightarrow \tan^2 x - 2\tan x + 1 = 0\]
\[ \Rightarrow \left( \tan x - 1 \right)^2 = 0\]
\[\Rightarrow \tan x = 1 = \tan\frac{\pi}{4}\]
\[ \Rightarrow x = n\pi + \frac{\pi}{4}, n \in Z \left( \tan\theta = \tan\alpha \Rightarrow \theta = n\pi + \alpha, n \in Z \right)\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 7.1 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of cosec x = –2


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×